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1. The aim of the discussion 

In the paper under discussion the authors give a comprehensive analysis of reliability of RC 
beams designed under the provisions of AC1 Building Code and obtain many important results. 
The implication of their analysis is that AC1 Code 318-89 gives a uniform reliability for the 
investigated design situations. All component reliability indices vary from 3.2 to 4.2. 

The aim of this discussion is to show that in some cases the probability of brittle failure is 
rather high, reliability is inadequate and reliability indices go well below 3.2. The reasons for 
these phenomena are revealed and some measures to remedy the situation are recommended. 

In what follows the paper under discussion will be termed “the paper”. 

2. Initial data 

Let us consider flexural strength of the beams. Three modes of bending failure are possible 
depending on whether the beam is lightly, moderately or over-reinforced. To distinguish 
between the modes the following limit-state functions are used in the paper: 

200 
g1=A,-- fy bv& (1) 

87000 

87000 + fy 
b,d. (2) 

* Permanent address: Research Institute of Concrete & Reinforced Concrete, 2nd Institutskaya street 6, 109428 
Moscow, Russia. 

Elsevier Science B.V. 
SSDI 0167-4730(95)00008-9 



118 Discussion /Structural Safety 17 (1995) 117-127 

E)quations (1) and (2) correspond to Eqs. (16) and (17) in the paper. Here 

4 = area of tension reinforcement (in2>; 
b,, d, h = width, effective depth and height of beam cross section (in>; 
f,‘, f, = compressive strength of concrete, yield strength of steel (ksi); 
PI = the ratio of the depth of stressed block in the compression zone to the 

distance between the outside compression surface and the neutral axis (here 
as well as in the paper & = 0.85). 

In the paper conditions g, < 0 and g, > 0 hold for light- and over-reinforcement, respec- 
tively. Otherwise (i.e., if g, > 0 and g, < 0) the beam is moderately reinforced. 

The limit-state functions for lightly, moderately and over-reinforced beams are, respectively, 
as follows: 

g, = Hr( 1.25hJz’/~) - M, (3) 

g, = 4 (5) 

ESquations (3)~(5) correspond to Eqs. (18)-(20) in the paper. Here 

B, = factor characterizing flexural model uncertainty; 
M = external bending moment. 

For generality let us divide both sides of Eq. (2) by b,d and both sides of Eqs. (3)~(5) by 
b,d*. Then 

&=P- 
0.85&f; 87000 

fY 87000 +fy ’ (6) 

gj = B~( 1.65dz) -M’, (7) 

(8) 

(9) 

Here p = A,/( b,d) is reinforcement ratio and superscript r stands for relative values of 
limit-state functions and external moments. For the sake of definiteness it is assumed in Eqs. 
(3), (8) that h = 1.15d. 

As was mentioned above, in the paper conditions g, < 0 and g, > 0 are used to distinguish 
between the cases of light- and over-reinforcement, respectively. Below we shall employ a 
similar condition gg > 0 for over-reinforcement. To distinguish the light reinforcement another 
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criterion instead of the condition g, < 0 will be used. The beam is lightly reinforced if its 
untracked strength is greater than cracked strength. Therefore the condition gi > gi, or 

PfY 1.65\/z > pfy 1 - - i I 1.7fb (10) 

holds for lightly reinforced beams. 

3. Probability of brittle failure 

In the paper only moderately reinforced beams with limit-state functions (4) are considered: 
it is correctly reasoned that the probabilities of light- and over-reinforcement are very small. 
However, the beam initially (deterministically) designed as moderately reinforced can be 
actually lightly or over-reinforced. Let us estimate probabilities of these events. 

By way of example consider a beam with the following material strengths: f, = 40 ksi; f,' = 4 
ksi. The beam is moderately reinforced if its reinforcement ratio satisfies the following 
conditions: 

Pmin s P i Pmax (11) 

where pmin = 0.005; pm, = apb = 0.037. The balanced reinforcement ratio p,, is determined by 
the following formula: 

0.85$3, f; 87000 
Pb = 

fY 87000 + fy * (12) 

In the paper the yield stress of steal is represented by a beta distribution with mean value 
48.8 ksi and C.O.V. = 0.107; the lower and upper bounds are, respectively, 33 and 62 ksi. 
Compressive strength of concrete is normally distributed with mean value 3.8 ksi and C.O.V. = 
0.180. If material strengths are random values, then the balanced reinforcement ratio pb is a 
random value too. Let us denote it by p:. Using Eq. (6) probabilities P(p > pd ) = P(g; * > 0) 
and P(p > ip; = p;,) h ave been determined (sign * stands for random values). Probability 
P(p > pt ) is the probability that the beam initially designed as moderately reinforced with 
reinforcement ratio satisfying conditions (11) is actually over-reinforced. In much the same way 
probability P(p > ap; ) is the probability that provisions of AC1 Building Code for moderately 
reinforced beams are violated. 

Calculations were performed using three approaches: 
(1) Monte Carlo simulation with subsequent approximation of the results by Pearson’s curves 
and numerical integration [1,2]; sample size was 5000 (this procedure is described in more 
detail in the next section). 
(2) Crude Monte Carlo simulation with sample size 5000. 
(3) Crude Monte Carlo simulation with sample size 15 000 (for some p values). 
All results were in close agreement. They are presented in Table 1. 

As can be seen from Table 1, the probabilities P(p > p:) and P(p > :p;) are very high for 
high p values and gradually go down as p vahtes decrease. Thus, the probability of brittle 
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Table 1 
Probabilities P(p>p;) and P(p>&) - 
P 0.037 0.035 0.033 0.030 0.028 0.025 0.023 0.020 0.018 0.015 0.013 0.010 

Sp>ph*) 0.543 0.469 0.384 0.255 0.184 0.094 0.053 0.016 0.007 0.001 0.0002 < 0.0002 
0.874 0.829 0.768 0.650 0.554 0.396 0.285 0.138 0.071 0.016 0.006 0.0002 

P(P>&;,) 

failure is fairly high even for relatively low p values: for example, P(p > pt 1 = 0.053 for 
p = 0.023. The reason for this phenomenon is quite apparent. The mean value of concrete 
strength 3.8 ksi is rather low, less than f,’ = 4.0 ksi, and C.O.V. = 0.180 is rather high. As a result 
the probability that concrete strength will fall below fd is high (it equals 0.614). From Eq. (6) 
one can see that the probability of over-reinforcement increases as concrete strength decreases. 
In view of high probability of low concrete strength values the probability of over-reinforcement 
is high. 

To estimate the probability of light reinforcement a similar methodology was used. In the 
course of Monte Carlo simulation condition (10) was checked for p = Pmin = 0.005. Three 
random variables fb * , VT, f,,* were taken into account. Their distributions for f,’ = 4 ksi and 
,fl = 40 ksi are given in the paper. It turned out that probability of light reinforcement was very 
close to zero (less than 10P4). Therefore in what follows the possibility of brittle failure due to 
li,ght reinforcement will be neglected. 

4. Reliability of beams 

As is evident from the foregoing, two failure modes described by limit-state functions (8), (9) 
should be taken into account in the course of beam reliability analysis. FORM/SORM 
methods used in the paper can take into account only one limit-state function. Therefore it is 
difficult, if not impossible, to use the methods in the case of two limit-state functions. Below is 
given another approach. By way of example reliability of the beam with material properties 
fi = 4 ksi and f, = 40 ksi is determined. Live-to-dead load ratio is assumed to be 2.5. 

The initial data for calculations were prepared in the following way: 
1. Specify reinforcement ratio p satisfying conditions (11). 
2. Determine the nominal relative moment capacity of the beam M,‘. Assume that the 

factorized relative external moment Mf’ equals 4M,’ (4 is a strength reduction factor, 
$!I = 0.9). 

3. Take Mr, = 0.25M,’ and M& = 0.75M;. Assume that M,‘, and M.& are factorized external 
moments produced by dead and live loads, respectively. Coefficients 0.25 and 0.75 
correspond to live-to-dead load ratio 2.5 for unfactored loads. 

4. Find unfactored moments: Mj’ = 0.25M:,/1.4; Mi = 0.75 M&/1.7 (here 1.4 and 1.7 are 
load factors for dead and live loads, respectively). 
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1. Using Monte Carlo simulation obtain a set of realizations of random variables 

2. 
3. 
4. 
5. 

Check condition (6) to determine whether the beam is moderately or over-reinforced. 
Choose the corresponding limit-state function among (8), (9) and calculate its value g’. 
Perform steps 1 to 3 m times. As a result obtain m values g;, . . . , g&. 
Fit an appropriate Pearson’s curve y(z) to describe probability density functions of g’ 
values. 

6. Calculate reliability of the beam R by numerical integration: 

5. Assume M; and Mi to be mean values of the random moments M,‘* and A4; * produced 
by dead and live loads, respectively. According to the data in the paper assume that Mf” 
is normally distributed with C.O.V. = 0.10 and M; * fits a type 1 extreme value distribution 
with C.O.V. = 0.25. 

6. In Eqs. (81, (9) assume that M’=M,‘* +M;*, fy=fy*, f,‘=f,J*; B,=B;, \I’fc’= 

where fy*, ff *, B;, vr are random values; parameters of their distributions are 
in the paper. 

Perform calculations in the following order: 

{F’, 
given 

R = i+“y(z) dz. (13) 
All calculations were performed with sample size m = 5000 and for some cases were checked 

by crude Monte Carlo simulation with sample size 15000. Reliabilities obtained by the two 
methods were in close agreement. To compare the results with those obtained in the paper the 
calculations were also performed using one failure mode, corresponding to the moderately 
reinforced beam and described by failure function (8). 

1 failure mode considered 

I 
I 

2.0 I I I I 
0 0.2 0.4 0.6 0.8 1.0 

.: 5 
Fig. 1’. 
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Calculation results are presented in Fig. 1. Here the reliability indices /? are plotted vs. 5. 
The 5 values are associated with the reinforcement ratio p in the following way: 

5= p -Pmin 
P max - Pmin ’ 

The p values are determined for eleven ,.$ values: 5 = 0, 0.1, 0.2, . . . , 1. 
The obtained results are in complete agreement with the values of probabilities P(p > pi,) 

discussed above. As can be seen from Fig. 1, if two failure modes are taken into account (solid 
line), the reliability index p = 3.15 remains unchanged for 0 I [ I 0.5 because in this case for 
the most part limit-state function (8) is used and it gives the highest g’ values. As 5 increases 
from 0.5 to 1, the probability P(p > p,&) increases as well (see Table 1). As a result in the 
course of Monte Carlo simulation in increasing number of cases limit-state function (9) is used 
and this function gives lower gr values in comparison with limit-state function (8). For 5 = 1 
(p = p,,) reliability index p drops to 2.5. 

Thus, reliability of beams is low if reinforcement ratio is high (p is close to pm,,>. Under 
these conditions moment capacity of the beam is governed predominantly by concrete; 
reinforcement does not contribute to the beam moment capacity (see Eq. (9)). Therefore 
reliability is low. 

In case of low and average reinforcement ratio (0 I 5 I 0.5, see Fig. 1) the beam is actually 
moderately reinforced, i.e., the probability of over-reinforcement is very small. Flexural 
strength of such beam is governed by both materials-concrete and steel (see Eq. (8)). The 
materials behave as though they support each other. 

Assume, for example, that concrete strength is low. Then if strength of reinforcement is 
sufficiently high, the depth of concrete compression zone increases and the beam can support 
the external moment with a reduced value of the arm of the internal couple. Similarly, if 
strength of reinforcement is low, but strength of concrete is sufficiently high, the depth of 
concrete compression zone decreases and the beam can support the external moment with a 
larger value of the arm of the internal couple. 

Maximum reliability index /3 = 3.15 coincides very closely with reliability index p = 3.2 
obtained in the paper for live-to-dead load ratio 2.5 (see Fig. 3 in the paper) as well as with the 
reliability index calculated taking into account one failure mode (the dashed line in Fig. 1). 
However, if only one failure mode is considered, the reliability index /3 = 3.15 remains constant 
on the whole interval 0 ( 5 I 1. From this it follows that the failure mode related to over-rein- 
forcement must not be neglected. 

To gain a better understanding of the matters under discussion, all above calculations were 
carried out for the beam with material strengths fb = 4 ksi; fY = 40 ksi: in this case the effects 
are more pronounced. In the paper two other cases were considered: fb = 3 ksi; f, = 40 ksi and 
f: = 4 ksi; f, = 60 ksi. These cases were checked too. If only one failure mode corresponding to 
moderate reinforcement was considered, the obtained results were in close agreement with 
those given in the paper. 

Fig. 1 indicates that reliability of the beams designed under the provisions of AC1 Building 
Code is non-uniform and inadequate for p values close to pm,. The problem arises how to 
remedy the situation. 
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5. Recommendations 

In my opinion, matters can be straightened out by the following measures. 
As was mentioned above, in case of over-reinforcement inadequate reliability arises from low 

strength of concrete, which in its turn is directly related to evaluation and acceptance rules. 
IJnder the provisions of AC1 Building Code the concrete is considered acceptable if two 
criteria are met: 
(1) No single test strength shall be more than 500 psi below the specified compressive strength 
f‘r- 
(2) The average of any three consecutive test results must equal or exceed the specified 
compressive strength, ff. 

The second criterion implies that the minimum required average compressive strength of 
concrete is equal to the specified compressive strength, f,. Consider the concrete in a batch. 
Assume that concrete strength is normally distributed with mean value fb. According to the 
second criterion, the concrete is accepted. In this batch the probability P(fb * >f,‘> that actual 
concrete strength ff * exceeds fb is very low and equals 0.5. In practice this exceedance 
probability is even lower; for concrete with f,’ = 4.0 ksi and C.O.V. = 0.18 the exceedance 
probability P<fb * >fb> is only 0.386. 

Several years ago similar drawbacks in the Russian Code for RC structures design came to 
light [l]. To remedy the situation it was decided to change the definitions of characteristic and 
design strengths of concrete. Previously characteristic strength B, was specified with ex- 
ceedance probability 0.95. Design strength R, was defined as the ratio R, = B/y,, where yc is 
a partial safety factor (‘yc > 1). To get rid of the cases with inadequate reliability additional 
requirements on characteristic B, and design R, strengths of concrete were imposed: probabil- 
ity that concrete strength exceeds B, and R, should be not less than 0.95 and 0.9986, 
respectively, with partial safety factor ‘y, being unchanged. Then the control procedures in the 
State Standard GOST 18105-86 “Concrete. Rules for Acceptance Control” were changed to 
meet these requirements. This procedure is described in detail in [3,4]. 

It is appropriate to consider a possibility to apply a similar approach to AC1 Code 318-89. 
Specified compressive strength of concrete f, can be defined with a certain exceedance 
probability. Then the rules for acceptance control of concrete can be changed in such a way as 
to satisfy this definition. In this case the minimum average required compressive strength of 
concrete will, of course, exceed f,‘. 

By these means the cases with inadequate reliability are eliminated. However, excessive 
reliability can appear in some cases (e.g., for 0 I 5 I 0.5, see Fig. 1). In such an event a material 
combination factor [l] can be introduced to regulate reliability. 

The material combination factor is an additional partial safety factor. It is similar to load 
factors. It takes into account low probabilities of simultaneously low values of strength of 
several materials, when the materials behave as if they support each other. By comparison, load 
factors take into account low probabilities of simultaneously high values of several loads. With 
the material combination factor a uniform reliability can be achieved. 

This approach can be applied not only to beams, but to other structures as well. 
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6. Conclusion 

From the above discussion the following conclusions related to flexural strength of RC 
beams can be drawn: 
1. Reliability of RC beams designed under the provisions of AC1 Building Code is non-uniform 

and changes substantially with reinforcement ratio p. The lowest values of reliability occur 
for beams with p values close to &. 

2. For the above case the probability of brittle failure is rather high. 
3. In the course of reliability analyses of RC beams two failure modes, corresponding to 

moderate and over-reinforcement should be taken into account. 
4. For investigated cases the probability of brittle failure due to light reinforcement is very 

small and therefore can be neglected. 
5. To decrease the probability of brittle failure due to over-reinforcement the rules for 

acceptance control of concrete can be changed. 
6. To achieve a uniform reliability a material combination factor can be used. 
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Authors’ reply 

The writers want to thank Professor Krakovski for his valuable comments and discussion of 
their paper. His contribution further enhances the understanding of the subject matter. In the 
interest of further clarification, the writers would like to offer the following comments in reply. 

The reliability analysis of RC beams of rectangular cross sections designed according to the 
AC1 Building Code, but which can actually fail in brittle mode requires additional statistical 
data to characterize the model uncertainty factor (B,) corresponding to the brittle bending 
failure mode. As mentioned by the discusser, a reliability analysis accounting for both the 
ductile and brittle bending failure modes necessitates a system reliability approach. The curves 
in Fig. 1 of the discussion are produced by varying the cross-section dimensions and the relative 
amount of concrete and reinforcement steel at a fixed ratio of the moments due to dead and 
live loads (i&/M,’ = 2.5). This moment ratio is related to the live-to-dead load ratio, 8 = L/D, 
used in the paper through 
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in which the various floor and beam dimensions are defined in the paper. The live-to-dead load 
ratio 0 is used in the AC1 Code to specify live loads for various types of buildings, and it has 
been adopted by previous researchers as an independent benchmark parameter characterizing 
the design situation and in terms of which the reliability is computed. Thus, the live-to-dead 
moment ratio of 2.5 in the discussion corresponds to a live-to-dead load ratio of 0 = 1.81 in the 
paper. 

The paper examines the variation of the bending reliability index p in terms of the 
live-to-dead load ratio 13 by keeping fixed cross-section dimensions and changing the steel 
reinforcement ratio, ps, as needed. On the other hand, the discussion analyzes, for a specific 
live-to-dead load ratio of 8 = 1.81, the variation of the reliability index as a function of the 
normalized steel reinforcement ratio 5 = ( ps - pmi,>/( pmax - pmin) by changing the cross-section 
dimensions and therefore the relative amount of concrete and steel between designs. In other 
words, the paper and the discussion look at different “sub-classes” of design situations. The 
variation of p as a function of the abscissa 5 presented in the discussion would appear as 
vertical perturbations of the p versus 0 curves in the paper. For a given 8 value, there would 
be a range of p values depending on the steel reinforcement ratio adopted; p would decrease 
as the reinforcement ratio increases. It is the extent of this fluctuation in p that is of interest 
and it depends on 8 and the material strength parameters. 

In the paper, the probability of failure (or reliability index) is computed using FORM/SORM 
and based on the assumption that the probability of brittle failure in bending is negligible. In 
the discussion, the brittle failure in bending is accounted for and the (global) bending failure 
probability is obtained through Monte Carlo simulation with sample sizes of 5000 or 15 000. In 
this closure, a general system approach is used to compute the bending failure probability 
including both the ductile and brittle failure modes. On neglecting the brittle failure mode due 
to light reinforcement and referring to the component limit-state functions defined in the 
paper, the “system” failure domain F can be expressed as 

F= M&<O) n (g44” Kg2 wn <g,<wl~ 
and, from the total probability theorem, the bending failure probability is given by 

(2) 

The failure probability of this “system” can be computed by the second-order directional 
simulation method in which the modal failure surfaces are approximated as hyper-parabolic 
surfaces fitted at the design point in the SORM analysis, or by the crude Monte Carlo 
simulation method. Both of these methods are implemented in CALREL and were used for the 
analysis presented below. In both cases, the simulation stops after 100000 trials or after the 
sample coefficient of variation of the failure probability estimate falls below 5 percent (0.05). 
The above system reliability analysis was performed for different values of the normalized steel 
reinforcement ratio 5 and for the same live load and material properties as those used in the 
discussion, namely fy = 40 ksi, f,’ = 4 ksi, and L/D = 1.81. 

As mentioned in the paper, due to lack of experimental data there is a practical problem in 
choosing the suitable statistics for the model uncertainty factor, B,, related to the brittle failure 
mode in bending. Furthermore, Table 2 and Fig. 10 in the paper show large sensitivities of p 
with respect to the mean and standard deviation of B,. Although these sensitivity results are 
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Ductile hending failure mode only (as in the paper) kLB = 1.10 

Ductile and brittle bending failure modes with pB = I?20 

Ductile and brittle bending failure modes with pBf = 1.10 

Ductile and brittle bending failure modes with kB:= 1.00 

b.0 0.2 0.4 0.6 023 1.0 
5 

Fig. 1. Bending reliability index j3 vs. normalized steel reinforcement ratio s. 

obtained for the ductile bending failure mode, similar results can be expected far the brittle 
failure mode. Nevertheless, in order to solve the bending reliability problem with the objective 
of examining the effect of the brittle failure mode on the (global) bending reliability index, the 
same first- and second-order statistics, F~, and uFf, are adopted for the ductile and brittle 
failure modes, and then the sensitivity of the bendmg reliability index with respect to pg, for 
the brittle failure mode is examined. By varying the dimensions of the beam cross section, 
different designs are obtained for the same live-to-dead load ratio of 8 = 1.81 and the 
computed reliability index /3 is plotted against the normalized steel reinforcement ratio 5 as 
shown in Fig. 1 of this closure. For comparison purposes, Fig. I also contains the bending 
reliability index obtained whe.n accounting for the ductile bending failure mode only. It is 
observed that the bending reliability indices obtained when neglecting and when accounting for 
the brittle failure mode both decrease with increasing reinforcement ratio. In the case of the 
ductile bending failure mode only, the decrease of /3 with increasing 5 is due to the fact that as 
the reinforcement ratio increases, the beam flexural strength becomes increasingly sensitive to 
the concrete strength whose variability is larger than that of the reinforcement steel. The 
additional decrease of /3 with respect to c when both the ductile and brittle failure modes are 
considered is explained by the fact that as 5 increases, P[g, > 0] in Eq. (2), namely the 
probability of over-reinforcement, increases and the conditional failure probability P[g, < 0 1 g, 
> 01, that is the probability of bending failure given that the beam is over-reinforced, depends 
on the “high-variability” concrete strength and is independent of the “low-variability” steel 
strength. When considering only the ductile bending failure mode, the discusser obtained a 
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constant reliability index with respect to 5, see Fig. 1 of discussion, thus giving a larger 
difference in j3 between the two approaches (ductile only versus ductile and brittle). 

Based on the discussion and the additional results presented in this closure, several points 
are worth mentioning. First, it is found that the difference between the one-mode and 
two-mode bending reliability indices is negligible for small 5, say 5 < 0.4. Second, most 
practicing engineers design at 50 percent of the maximum allowable steel reinforcement ratio, 
corresponding to 0.50(&J = 0.375~~ where P,, denotes the balanced reinforcement ratio given 
in Eq. (17) of the paper for a rectangular cross-section, in order to provide adequate beam 
depth for deflection control. Using the example considered in the discussion, 0.375~~ corre- 
sponds to 5 = 0.42. Around this value of 5, Fig. 1 of both the discussion and the closure show 
that the contribution of the brittle failure mode on the (global) bending reliability index is 
practically negligible and that the bending reliability index and corresponding parametric 
sensitivities obtained by considering only the ductile failure mode are sufficient to provide the 
designer with a rational safety assessment of the RC beam designed according to the AC1 
Building Code. Third, to illustrate the sensitivity of p with respect to pLLBp, the mean bias of the 
analytical strength prediction, the p versus 5 two-mode reliability curve is recomputed for the 
values of pu,f = 1.00 and 1.20 and plotted in Fig. 1. It is noticed that the bending reliability 
index is very sensitive to pLLBp, especially in the range 0.45 < 5 < 1. Further variations of p can 
be produced if larger values of uBf are considered, which is not shown here. In light of this high 
sensitivity of the bending reliability index with respect to the first- and second-order statistics of 
the model uncertainty factor B,, the bending reliability index obtained by considering both the 
ductile and brittle failure modes is questionable and should be used with caution until pg, and 
aBl are estimated from experimental data on brittle bending failure due to over-reinforcement. 
Finally, in cases where the member size is limited and a high steel reinforcement ratio cannot 
be circumvented, the results presented in the discussion and in this closure indicate that the 
bending failure probability of RC beams satisfying the AC1 Building Code requirements may 
increase significantly. The design code modifications recommended by the discusser might be 
useful to correct this inconsistency. 


